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Abstract

We present a methodology of high order accuracy that constructs in a systematic way functions which can be used

for the accurate interpolation and differentiation of scattered data. The functions are based on linear combination of

polynomials (herein B-splines are used). The technique is applied to one-dimensional datasets but can be extended as

needed for multidimensional interpolation and differentiation. The methodology can also construct one-sided functions

for high-order interpolation and differentiation. The constructed functions possess compact support. The penalty for

the high order of accuracy is the need to solve a system of L� L equations where L is the order of the approximation. In

order to have a robust solution of the L� L system the singular value decomposition technique was adopted. The

proposed technique can also be applied in the context of other methods, in order to increase their accuracy. The main

novel features of the technique are that no grid-based information (connectivity) is necessary and a minimum number of

samples are required to achieve the desired order of approximation. The order of the approximation is not affected

when more samples than the minimum necessary are added in the domain of influence.

� 2003 Elsevier Inc. All rights reserved.
1. Introduction

The reconstruction of continuous functions and/or their derivatives from a set of samples is a funda-

mental operation, with applications in many areas such as, signal processing [1], image analysis [1–4], vi-

sualization [5] and particle methods [6–8]. In most of the cases it is necessary to interpolate from discrete

samples to intermediate values. Meijering [1] presented a thorough chronological overview of the devel-

opments in interpolation theory.

In most of the cases, the interpolation is based on the approximation of a sufficiently smooth function f
through a kernel function W based on integral interpolant theory [9,10] or, more generally, on the ap-

proximation theory using convolution operators [11]. The kernel function is the essence of the interpolation
algorithms and the trends in the interpolation techniques are focused on the improvement of the kernel
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function (better accuracy and/or reduction of the computational cost). In image and signal processing,

interpolation is one of the fundamental tools. Extensive comparison and evaluation of the interpolation

functions can be found in [2–4]. The particles methods [12] with best representatives particle-in-cell (PIC)
[13–15], the vortex particle methods [8,16] and smooth particle hydrodynamics (SPH) [6,17,18] are using

interpolation or differentiation based on the same principles. As examples of significant progresses of the

interpolation functions we mention the fundamental set of interpolating kernels introduced by Schoenberg

[9,10] and the construction of higher order kernels either by forcing the Taylor series of the sampled

function to agree in as many terms as possible with the original signal [19], or by increasing the accuracy of

the interpolation functions in a systematic way through extrapolation [20]. Both Keys [19] and Monaghan

[20] derived the same kernel function W4 (or M 0
4) or cubic convolution interpolation, which is one of the

commonly and successfully used functions in particle methods [8,16] and image analysis [1–4]. Recent
improvements are based on Taylor series expansion [21] or on design of functions close to the sinc function
[22] or on linear combination of shifted versions of compactly-supported basis functions [23]. More ex-

tended review and references about the development of the interpolation methods can be found in [1].

Summarizing, we can conclude that there is an extended investigation and development for interpolation

from uniform (equidistant) spaced samples. The interpolation is, most of the times, based on symmetric

polynomial functions (usually splines) with compact support. The above characteristics (or assumptions)

are often met in image and signal process. However, this is not the case in particle methods (like SPH). In

addition, to the best of our knowledge, there is no significant body of work on non-symmetric or one-sided
interpolation or differentiation functions, which can be useful for interpolation or differentiation near

discontinuities or boundaries, with the exception of the first order nearest grid point (NGP) interpolation

[7] and the second order biased ordinary interpolation shown in [24] (not a continuous function) and the

recently proposed continuous function [25] (for staggered grids). In addition, during the proof stage of this

paper a research report related to spline interpolation was brought to our attention by its author [26].

The aim of the present paper is to derive a technique that can reproduce kernel functions in a systematic

way. The constructed kernels are characterized by high order of approximation, compact support, and can

be applied to arbitrarily ordered samples. Additionally, the technique can produce centered or one-sided
functions. The constructed functions presented herein are based on the centered B-splines introduced by

Schoenberg [9,10]. Extension to different families of polynomial functions is also possible. The approxi-

mation optimization of the kernel function is based on the linear combination of functions with compact

support (as in [20,23]) by matching terms in the Taylor series expansion (as in [19,21]). The proposed

methodology can reproduce already existing functions for equidistant samples, which are based on B-

splines like W4 (or M 0
4) [20]. The penalty of the high order of accuracy for arbitrary sample is that one needs

to solve, in the worst case scenario, a system of L� L equations, where L is the order of the approximation.

The additional computational cost of the proposed methodology is deemed to be small compared to other
relevant interpolation schemes. We believe that the present methodology is a significant step towards high

order multidimensional interpolation and differentiation from arbitrarily sampled data.

The present paper is organized in two sections: In Section 2, we outline the basic mathematical

framework in which the proposed technique is based. In Section 3, the interpolation and differentiation

technique is evaluated for equidistant and non-equidistant samples using symmetric and one sided

support.
2. Mathematical formulation

2.1. Integral interpolation – Taylor series expansion

Starting from integral interpolant theory, a linear interpolation operator, can be written in the form
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hf ðxÞi ¼
Z
D
f ðx0Þdðx� x0Þdx0; ð1Þ

where x is a location vector, f ðxÞ is the interpolated function, D is the domain (D ¼ Rn), d is the delta

function and the symbol h�i denotes the approximated interpolation value. Instead of the delta function, a

function W can be used

hf ðx; hÞi ¼
Z
D
f ðx0ÞW ðx� x0; hÞdx0; ð2Þ

where h is a scaling variable with dimensions of length and is termed the smoothing length, because it

controls the degree to which the kernel W is spread in space. Note that it determines the domain of influence
of the kernel and does not refer to any other separation distance. The function W is the key element the

approximation and has the following properties:Z
D
W ðr � r0; hÞdr0 ¼ 1;

hf ðr; hÞi ! f ðrÞ; h ! 0:

ð3Þ

If we consider that the function f is known at a set of points fx1; x2; . . . ; xNg the operator (2) can ap-

proximated numerically using quadrature

hf ðx; hÞi ¼
XN
j¼1

fj
nj
W ðx� xj; hÞ; ð4Þ

where fj � f ðxjÞ and nj � nðxjÞ is the number density of the points at x. Note that in particle simulations

the interpolation points are particles and the volume of the particles Vj is used instead of the number

density.

hf ðx; hÞi ¼
XN
j¼1

fjVjW ðx� xj; hÞ: ð5Þ

The kernel function W should satisfy only Eq. (3) requirements, and it is clear that many functions can

be used for interpolation. In [1–4,6,27,28] an extended survey can be found on interpolation functions. In

the present work we will focus on the B-splines kernels introduced by Schoenberg [9,10].

Before proceeding further, we will define some parameters commonly used in B-splines terminology. The

B-splines are piecewise polynomials functions. The degree of the polynomials defines the degree of the B-

spline. The order of the B-spline (or order of approximation, L) gives a global estimate of how fast the error

of the approximation decays when the sampling step become finer. The regularity of the B-spline (R) defines
how many times the function is continuously differentiable. The support or cut-off distance of the B-splines

defines the normalized distance that the function is non-zero. The computational cost of the interpolation is

strongly related to the support of the B-spline. In practice, for multidimensional computations, the in-

terpolating kernels are useful and usable only when their support is short.

In Appendix A representative B-splines are shown. Generally they can be written in symbolic form

as

Ml
nðx; hÞ ¼ nd

Xn�1

i¼0

ai;lsi; s ¼ jxj
h
; ðA:9Þ
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where nd is a normalization constant nd / 1
hd

� �
, d is the dimension space of the problem ðf : Rd ! RÞ and

the index l represents every segment of the spline.

Increasing the degree of B-splines, improves the smoothness of the interpolation quantity from possibly
scattered samples without the need for connectivity or grid based information. However, their accuracy is

limited to second order due to be positive in the entire area of support. This is easy to prove it if we write the

Taylor series expansion around each of the set of points fx1; x2; . . . ; xNg.
f1 ¼ f ðxÞ þ f 0ðxÞðx1 � xÞ þ f 00ðxÞ ðx1 � xÞ2

2!
þ f 000ðxÞ ðx1 � xÞ3

3!
þ f

0000 ðxÞ ðx1 � xÞ4

4!
þHOT;

f2 ¼ f ðxÞ þ f 0ðxÞðx2 � xÞ þ f 00ðxÞ ðx2 � xÞ2

2!
þ f 000ðxÞ ðx2 � xÞ3

3!
þ f

0000 ðxÞ ðx2 � xÞ4

4!
þHOT;

..

.

fN ¼ f ðxÞ þ f 0ðxÞ xNð � xÞ þ f 00ðxÞ ðxN � xÞ2

2!
þ f 000ðxÞ ðxN � xÞ3

3!
þ f

0000 ðxÞ ðxN � xÞ4

4!
þHOT:

ð6Þ
Multiplying each equation with the volume of each point and with the kernel function W yields.
f1V1W ðx� x1;hÞ ¼ f ðxÞV1W ðx� x1;hÞþ f 0ðxÞðx1 � xÞV1W ðx� x1;hÞþ f 00ðxÞ ðx1 � xÞ2

2!
V1W ðx� x1;hÞ

þ f 000ðxÞ ðx1 � xÞ3

3!
V1W ðx� x1;hÞþ f

0000 ðxÞ ðx1 � xÞ4

4!
V1W ðx� x1;hÞþHOT;

f2V2W ðx� x2;hÞ ¼ f ðxÞV2W ðx� x2;hÞþ f 0ðxÞðx2 � xÞV2W ðx� x2;hÞþ f 00ðxÞ ðx2 � xÞ2

2!
V2W ðx� x2;hÞ

þ f 000ðxÞ ðx2 � xÞ3

3!
V2W ðx� x2;hÞþ f

0000 ðxÞ ðx2 � xÞ4

4!
V2W ðx� x2;hÞþHOT;

..

.

fNVNW ðx� xN ;hÞ ¼ f ðxÞVNW ðx� xN ;hÞþ f 0ðxÞðxN � xÞVNW ðx� xN ;hÞþ f 00ðxÞ ðxN � xÞ2

2!
VNW ðx� xN ;hÞ

þ f 000ðxÞ ðxN � xÞ3

3!
VNW ðx� xN ;hÞþ f

0000 ðxÞ ðxN � xÞ4

4!
VNW ðx� xN ;hÞþHOT;

ð7Þ
if we sum all the equations
XN
j¼1

fjVjW ðx� xj; hÞ ¼ f ðxÞ
XN
j¼1

VjW ðx� xj; hÞ þ f 0ðxÞ
XN
j¼1

ðxj � xÞVjW ðx� xj; hÞ

þ f 00ðxÞ
2!

XN
j¼1

ðxj � xÞ2VjW ðx� xj; hÞ þ
f 000ðxÞ
3!

XN
j¼1

ðxj � xÞ3VjW ðx� xj; hÞ

þ f
0000 ðxÞ
4!

XN
j¼1

ðxj � xÞ4VjW ðx� xj; hÞ þHOT: ð8Þ
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The summations in Eq. (8) can be written as integralsZ
D
f ðx0ÞW ðx� x0; hÞdx0 ¼ f ðxÞ

Z
D
W ðx� x0; hÞdx0 þ f 0ðxÞ

Z
D
ðx0 � xÞW ðx� x0; hÞdx0

þ f 00ðxÞ
2!

Z
D
ðx0 � xÞ2W ðx� x0; hÞdx0 þ f 000ðxÞ

3!

Z
D
ðx0 � xÞ3W ðx� x0; hÞdx0

þ f
0000 ðxÞ
4!

Z
D
ðx0 � xÞ4W ðx� x0; hÞdx0 þHOT: ð9Þ

From Eq. (9) it is clear that the moments of the interpolation function are strongly related to the accuracy

of the interpolation [7,8]. For interpolation of order L accuracy, it is necessary that the function W satisfies
the following propertiesZ

D
W ðx; hÞdx ¼ 1;

Z
D
xW ðx; hÞdx ¼ 0;

Z
D
x2W ðx; hÞdx ¼ 0;

..

.

Z
D
xLW ðx; hÞdx ¼ 0;

Z
D
xLþ1W ðx; hÞdx < 1:

ð10Þ

It is also clear that a positive symmetric function (like the B-splines) is limited to second order accuracy.

Many successful attempts to construct high-order (L > 2) interpolating functions are based on the reali-

zation of Eq. (10) [19,21].

One of the disadvantages of the improved (more accurate) interpolated formulas, for example of the W4

(or M 0
4) or cubic convolution interpolation [19,20], compared to the B-splines [9,10] is that their accuracy

drops significantly away from the optimal design area (this reduction of accuracy is however not more

pronounced than in other B-spline kernels). The optimal design area is defined as equidistant samples with
smoothing length being equal to the spacing of the samples (h ¼ dx) (in Section 3.1 we will show an error

analysis of this function). We must note the assumptions of equidistant samples and the smoothing length

being equal to the sampling distance are matched most of the times in signal and image process, but this is

not the case in particle methods [6].

Our idea for high-order interpolation is related to the construction of a kernel function W which satisfies

Eq. (10) until the desired order L using a linear combination of k compactly supported functions Wk, where

W0 is one of the B-splines Mn and W1, W1; . . . ;Wk�1 are functions based on the derivatives of Mn. In the

Sections 2.2 and 2.3 we will show how the basis functions are constructed.

2.2. Approximation by convolution and linear independent functions

From the classical theory of mollified approximation of a sufficiently regular function f [29] with a

convolution operator � and a kernel function g, the approximation of the function hf i can be written:

hf i ¼ f � g; ð11Þ

and the spatial derivatives can be approximated as
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hrf i ¼ ðrf Þ � g ¼ f � rg: ð12Þ

Eq. (2) is a convolution approximation and Eq. (12) is usually applied for the approximation of the de-
rivatives [6,17,18]. The integral interpolant approximation of the derivatives equivalent to Eq. (2) is

hrf ðx; hÞi ¼
Z
D
rf ðx0ÞW ðx� x0; hÞdx0 ¼

Z
D
f ðx0ÞrW ðx� x0; hÞdx0; ð13Þ

which is valid for every continuous function f .
If a polynomial function is symmetric f ðxÞ ¼ f ð�xÞ ¼ f sðxÞ or antisymmetric (with respect to x ¼ 0)

f ðxÞ ¼ �f ð�xÞ ¼ f asðxÞ then it has the following forms, respectively:

f sðxÞ ¼ a0 þ a1xþ a2x2 þ � � � þ an�1xn�1 þ anxn 06 x;
a0 � a1xþ a2x2 þ � � � þ ð�1Þn�1an�1xn�1 þ ð�1Þnanxn 0 > x;

�
ð14Þ
f asðxÞ ¼ a0 þ a1xþ a2x2 þ � � � þ an�1xn�1 þ anxn 06 x;
�a0 þ a1x� a2x2 þ � � � � ð�1Þn�1an�1xn�1 � ð�1Þnanxn 0 > x:

�
ð15Þ

It is simple to show that when we differentiate a symmetric respective antisymmetric polynomial function

the result is an antisymmetric respective symmetric function

oxf sðxÞ ¼ �oxf sð�xÞ oxf asðxÞ ¼ oxf asð�xÞ: ð16Þ

The same holds when we multiply a function by x

xf sðxÞ ¼ �xf sð�xÞ xf asðxÞ ¼ xf asð�xÞ: ð17Þ

The integral of an antisymmetric function around the axis x ¼ 0 is zeroZ
f asðxÞdx ¼ 0: ð18Þ

If the interpolation function W is a symmetric polynomial function of degree n, we can show (using Eqs.

(3), (13), (16)–(18) thatZ
D
ðx0ÞnonxW ðx� x0; hÞdx0 ¼ ð�1Þnn!; ð19Þ

which implies (from Eq. (3)) that the functions c1 x oW
ox ; c2 x2 o2W

ox2 ; . . . ; cn xn onW
oxn

n o
are also interpolation func-

tions where cn ¼ 1
ð�1Þnn!.

The function W can be written as

W ¼ a0 þ a1xþ a2x2 þ � � � þ an�1xn�1 þ anxn ¼ W0: ð20Þ

The interpolation functions read

1 1 1 1 � � � 1
0 1 2 3 � � � n
0 0 1 � 2 2 � 3 � � � ðn� 1Þ � n
0 0 0 1 � 2 � 3 � � � ðn� 2Þ � ðn� 1Þ � n
..
. ..

. ..
. ..

.
� � � ..

.

0 0 0 0 � � � n!

2
66666664

3
77777775

a0
a1x
a2x2

a3x3

..

.

anxn

2
66666664

3
77777775
¼

W
xoW
x2 o2W
x3 o3W

..

.

xn onW

2
6666664

3
7777775
¼

W0

W1=c1
W2=c2
W3=c3

..

.

Wn=cn

2
66666664

3
77777775
: ð21Þ
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The determinant of the matrix in Eq. (21) is always non-zero

1 1 1 1 � � � 1

0 1 2 3 � � � n
0 0 1 � 2 2 � 3 � � � ðn� 1Þ � n
0 0 0 1 � 2 � 3 � � � ðn� 2Þ � ðn� 1Þ � n
..
. ..

. ..
. ..

.
� � � ..

.

0 0 0 0 � � � n!

�������������

�������������

¼ 1! � 2! � 3! � � � n! 6¼ 0 ð22Þ

and the functions fW0;W1;W2;W3; . . . ;Wng are linearly independent functions [30]. A linear combination of

these functions W

W ¼ C0W0 þ C1W1 þ C2W2 þ C3W3 þ � � � þ CnWn ð23Þ

can be used in order to construct a function that can satisfy Eq. (10) until the n moment.

R
D W dxR
D xW dxR
D x

2W dx

..

.R
D x

nW dx0

2
666664

3
777775
¼

R
DðC0W0 þ C1W1 þ C2W2 þ C3W3 þ � � � þ CnWnÞdxR
D xðC0W0 þ C1W1 þ C2W2 þ C3W3 þ � � � þ CnWnÞdxR
D x

2ðC0W0 þ C1W1 þ C2W2 þ C3W3 þ � � � þ CnWnÞdx
..
.R

D x
nðC0W0 þ C1W1 þ C2W2 þ C3W3 þ � � � þ CnWnÞdx0

2
666664

3
777775

¼

R
D W0 dx

R
D W1 dx

R
D W2 dx

R
D W3 dx � � �

R
D Wn dxR

D xW0 dx
R
D xW1 dx

R
D xW2 dx

R
D xW3 dx � � �

R
D xWn dxR

D x
2W0 dx

R
D x

2W1 dx
R
D x

2W2 dx
R
D x

2W3 dx � � �
R
D x

2Wn dx

..

. ..
. ..

. ..
.

� � � ..
.

R
D x

nW0 dx
R
D x

nW1 dx
R
D x

nW2 dx
R
D x

nW3 dx � � �
R
D x

nWn dx

2
666664

3
777775

C0

C1

C2

C3

..

.

Cn

2
66666664

3
77777775

¼

1

0

0

0

..

.

0

2
6666664

3
7777775
: ð24Þ

The construction the system of Eq. (24) does not guarantee that there exist no singularities. This is not

considered however as disadvantage, since we can achieve a specified accuracy when solving a smaller

subsystem of (24). For example for 3rd order accuracy the 3� 3 subsystem of (24) is sufficient. For the

solution of a system that might be singular the singular value decomposition [31,32] (SVD) technique can be
used.

2.3. B-splines and high-order interpolation

Until now we formed a system of Eq. (24) which can construct a interpolation function that guarantees a

desired order interpolation. The basic assumption made, is that the initial function W0 is a symmetric

polynomial interpolation function. Typical functions that satisfy these assumption are the B-splines Mn

[9,10]. Because the B-splines are constructed by polynomial segments, the regularity of the functions Wk

decreases every time we use a higher derivative of the function. The interpolation function can be written as
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W ðx; hÞ ¼
XL

k¼0

Ckxk
ok

oxk
Mnðx; hÞ: ð25Þ

As we noted before, the system (24) may be singular. This is always the case when the samples are
symmetric and the odd moments are zero by definition

R
D x

k ok

oxk W ¼ 0; k ¼ 1; 3; . . . ; n
� �

. In Fig. 1 the

representative functions based on M6 and its derivatives are shown. In order to have an interpolation

function W with regularity R and order of approximation L it is necessary to use B-splines of degree n where

n ¼ Lþ R: ð26Þ
x/h

W
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Fig. 1. The six linear independent functions based on the quintic spline (M6).
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We must note that the function shown in (25) is generating a family of interpolation functions which is

different than the maximum order minimum support (MOMS) functions [23]. The latter functions are based

on the general formula W ðx; hÞ ¼
PL

k¼0 Ck
ok

oxk Mnðx; hÞ and in order to have symmetric interpolating function
only the even derivatives are used. The functions based on Eq. (25) have higher regularity for the same

order of approximation.
2.4. One-sided interpolation

The methodology we presented herein for high-order interpolation is based on the linear combination of

interpolation functions in order to construct a function W which satisfies Eq. (24) to a desired order of

approximation. We must note that any linear combination of non-interpolating functions that construct a
function W which satisfies Eqs. (3) and (24) to a desired order of approximation, can also be used for

interpolation.

Under this consideration it is clear that we can apply the methodology presented above for a polynomial

function, without the need of having symmetric samples. This idea can construct one-sided functions that

can achieve high-order interpolation. One-sided interpolation can be very useful in the presence of dis-

continuities [33,34] and sharp gradients (as in boundary layers).

In the present paper we will investigate numerically the one-sided interpolation based on the B-splines.

We recognize that for one-sided interpolation it is possible that B-splines may not provide the optimum
solution. Our aim, however, is to present a methodology that it is able to construct functions that reach

high-order of approximation and is not restricted to a specific family of functions.
2.5. High-order differentiation

One fundamental property of the system of Eq. (24) is that it can provide also a function for the ap-

proximation of the derivatives if we a apply a different right-hand-side matrix. For example, the solution of

the system

R
D W0 dx

R
D W1 dx

R
D W2 dx

R
D W3 dx � � �

R
D Wn dxR

D xW0 dx
R
D xW1 dx

R
D xW2 dx

R
D xW3 dx � � �

R
D xWn dxR

D x
2W0 dx

R
D x

2W1 dx
R
D x

2W2 dx
R
D x

2W3 dx � � �
R
D x

2Wn dx

..

. ..
. ..

. ..
.

� � � ..
.

R
D x

nW0 dx
R
D x

nW1 dx
R
D x

nW2 dx
R
D x

nW3 dx � � �
R
D x

nWn dx

2
666664

3
777775

C0

C1

C2

C3

..

.

Cn

2
66666664

3
77777775
¼

0

1

0

0

..

.

0

2
6666664

3
7777775

ð27Þ

yields a function W that can approximate the first order derivative. In general, the system (27) may not be

solved when the function W is symmetric since the second equation may have no solution (Appendix B). To

this end, the form of the second equation might be:

0 � C0 þ 0 � C1 þ 0 � C2 þ 0 � C3 þ � � � þ 0 � Cn ¼ 1: ð28Þ

To have a system that it is possible to solve, we need to use different basis functions. One idea is to use the

derivatives of our interpolating functions fW0;W1;W2;W3; . . . ;Wng. The differentiation function can be

written as

oxW ¼ C0 oxW0 þ C1 oxW1 þ C2 oxW2 þ C3 oxW3 þ � � � þ Cn�1 oxWn�1: ð29Þ

The corresponding algebraic system has the form
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R
D oxW0 dx

R
D oxW1 dx

R
D oxW2 dx

R
D oxW3 dx � � �

R
D oxWn dxR

D xoxW0 dx
R
D xoxW1 dx

R
D xoxW2 dx

R
D xoxW3 dx � � �

R
D xoxWn dxR

D x
2 oxW0 dx

R
D x

2 oxW1 dx
R
D x

2 oxW2 dx
R
D x

2 oxW3 dx � � �
R
D x

2 oxWn dx

..

. ..
. ..

. ..
.

� � � ..
.R

D x
n oxW0 dx

R
D x

n oxW1 dx
R
D x

n oxW2 dx
R
D x

n oxW3 dx � � �
R
D x

noxWn dx

2
666664

3
777775

C0

C1

C2

C3

..

.

Cn

2
66666664

3
77777775
¼

0

1
0

0

..

.

0

2
6666664

3
7777775
: ð30Þ

Another possibility is to use an asymmetrical B-spline Mas
k , simply by changing the sign of a B-spline Mk

according to the following formula

Mas
k ðx; hÞ ¼ signðxÞMkðx; hÞ: ð31Þ

And as a result, when we useMas
k the terms of the odd lines of the system (27) may be zero, but the system is

now solvable.

Using the ideas presented in the previous section we can also construct one-sided differentiation func-

tions, which are comparable to the upwind differentiation formulas in finite differences.

Kernels for higher-order derivatives can be derived by simply changing the right-hand-side matrix of the

system (27).
3. Results and discussion

3.1. Interpolation

As we mentioned before, this paper presents a methodology in order to construct interpolation functions

and not just an interpolation kernel. For the sake of brevity we will validate our methodology for a few
families of functions based on M4, M6, M7 and M8.

Fig. 2 shows an error analysis for M4 and M 0
4, with the smoothing length h equal to the sample distance

dx (h ¼ dx). In Fig. 2(a) the sample and the interpolation locations are depicted. The function that it is

interpolated reads

f ðxÞ ¼ sinð3:5pxÞ ð32Þ

(Fig. 2(b)). The error analysis is based on the absolute error

Error ¼ f ðxÞj � hf ðx; hÞij: ð33Þ

The M4 error is almost uniform for the entire area of interpolation (Fig. 2(c)). M 0
4 is more accurate

compared to M4 as shown in Fig. 2(d). This is expected since M 0
4 achieves 3rd order of approximation

whereas M4 is 2nd order. Near x ¼ 0:4 and x ¼ 0:5 the error is considerably smaller since it corresponds to

sample locations. When the smoothing length and the sample spacing are not equal ðh 6¼ dxÞ, M 0
4 cannot

reach 3rd order of approximation. Fig. 3(a) shows the maximum norm of the absolute error L1 for the

cubic spline ðM4Þ.

L1 ¼ max f ðxÞjð � hf ðx; hÞijÞ ð34Þ

for different values of the ratio dx=h in the range 0.5–2.0. The ratio dx=h is directly related to the number of

point that contribute to the interpolation, as shown in Fig. 3(b). Since that the computational time is
proportional to the number of points involved in the interpolation, it is desired to keep this number small.

In Fig. 3(a) it is clear that M4 is second order when dx=h < 1:15. M 0
4 (Fig. 3(c)) shows a 3rd order accuracy

near dx=h ¼ 1 as expected, but deviates significant for the other values of the ratio dx=h. The order of the
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Fig. 2. Error analysis for M4 and M 0
4. (a) sample and interpolation locations, (b) field variable, (c) absolute error for M4, (d) absolute

error for M 0
4.
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interpolation is defined simply from the number of orders the error drops between the two cases using the

standard formulation, Errorfine
Errorcoarse

¼ dxfine
dxcoarse

� �Order
� �

. The error analysis ofM6 is shown in Fig. 3(d), where a 2nd

order accuracy is achieved when dx=h < 1:35.

Using the ideas outlined in 2.2 and 2.3 we can construct functions based on B-splines that can achieve
higher order of approximation. In Fig. 4(b) the maximum absolute error for a 3rd order function based on

M6 using the three first basis functions fW0;W1;W2g is shown. In Appendix B we present the details for the

solution of the system based on Eq. (24). The results indicate that the constructed function provides a 3rd

order of approximation for dx=h < 2. The overall behavior of the constructed functions is significantly

better than the B-spline M6 (shown in Fig. 4(a)). Similar results are observed when requesting 4th order

accuracy using four basis functions fW0;W1;W2;W3g (Fig. 4(c)) or 5th order accuracy using five basis

functions fW0;W1;W2;W3;W4g (Fig. 4(d)). We note that in order to achieve a desired order of approximation

a sufficient number of samples is required. This number of samples is equal to the order of approximation.
From Fig. 3(b) for M6 one expects a 3rd order of approximation for the entire range of dx=h
(0:5 < dx=h < 2), 4th order for dx=h < 1:5 and 5th for dx=h < 1:2. The same limits are clear also in the

error analysis plots of Fig. 4(c) and (d). Discrepancies can appear in the error plots and lead to much higher

errors. This is due to the fact that the system of Eq. (24) is near singular (small determinant but not zero)

and the technique presented in Appendix B is not appropriate. In order to avoid these discrepancies we are

employing the SVD technique [35]. The basic idea is that we can solve a system based on Eq. (24) without

imposing the condition that the number of equations and the number of unknowns are equal. Under this

consideration when fewer equations than unknowns are used, we are not expecting a unique solution, and
we can ignore the basis functions that can cause singularity. In Fig. 4(e) and (f) the error analysis of a 3rd

and 4th order function based on M6 is shown using a SVD algorithm. It is obvious that SVD removes the
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discrepancies compared to Fig. 4(b) and (c) and yields more uniform error distributions. The idea of using

more basis functions than the desired order of approximations, strengths significantly the methodology and

the additional degree of freedom makes the solution of the system more robust. The disadvantage is that

the regularity R of the constructed function is smaller. Note that there is not a confirmation that the
regularity and the order of approximation are coupled [21].

The interpolation technique presented in Sections 2.2 and 2.3 can be used to construct interpolation

functions for non-equidistant samples. Fig. 5(a) shows the spacing between the samples, which is perturbed

randomly around the average value. The standard B-splines M6 and M8 are producing a 2nd order ap-

proximation for a large part of the range of dx=h (Fig. 5(b)). Using the ideas presented in Sections 2.2 and

2.3 and an SVD algorithm we can construct 3rd and 4th order functions based on M6 using four and five

basis functions, respectively. The errors shown in Fig. 5(c) and (d) for the 3rd and 4th order functions

demonstrate an approximation close to the desired order. Using M8 we can achieve higher order of ap-
proximation than M6 since more basis functions can constructed. In Fig. 5(e) and (f) a 5th and 6th order

functions are shown based on six and seven basis functions, respectively. A high-order of interpolation is

achieved with non-equidistant samples. The effectiveness of a SVD technique on the solution of the system,

offers a robust and effective method to solve the system of Eq. (24).

As mentioned above in Section 2.4, we can apply the interpolation technique in order to construct one-

sided interpolation functions. Fig. 6 shows results using M4, M6 and M8 for interpolation from non-equi-

distant samples. The results indicate that we can construct high order one-sided interpolation functions
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Fig. 4. Error analysis of 3rd, 4th and 5th order functions based on M6. (a) L1 error of M6 as a function of smoothing length (––)

dx ¼ 0:1, (- - -) dx ¼ 0:01, (b) L1 error of 3rd order function based on M6 fW0;W1;W2g as function of smoothing length (––) dx ¼ 0:1,
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(2nd, 3rd and 4th order shown in Fig. 6(a)–(f)). The error is notably smooth, since the matrix of the system

of Eq. (24) is generally not singular, and the system has solution. For this reason there is no need for more

unknowns (basis functions) than equations in the system of Eq. (24).

Summarizing, the results demonstrate indeed that the present technique can construct interpola-

tion functions that achieve high order of approximation from arbitrary data. The only requirement is a
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Fig. 5. Error analysis of functions based on M6 and M8 for non-equidistant samples. (a) Distance between the samples with average
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minimum number of samples that is necessary to achieve the desired order of approximation. We have to

note that when we apply the technique for interpolation on equidistant samples using dx ¼ h the solution of

the system of Eq. (24) returns functions that are already known in literature [20],

M 0
4 ¼ 1:5M4 � 0:5x

oM4

ox
; ð35Þ
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Fig. 6. Error analysis of one-sided interpolation using functions based on M6 and M8 using SVD for non-equidistant samples. (a) L1
error of 2nd order function based onM4 fW0;W1g as function of smoothing length (––) dxav ¼ 0:1, (- - -) dxav ¼ 0:01, (b) L1 error of 2nd

order function based on M6 fW0;W1g as function of smoothing length (––) dxav ¼ 0:1, (- - -) dxav ¼ 0:01, (c) L1 error of 3rd order
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based onM8 fW0;W1g as function of smoothing length (––) dxav ¼ 0:1, (- - -) dxav ¼ 0:01, (e) L1 error of 3rd order function based onM8
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M 0
5 ¼ 1:5M5 � 0:5x

oM5

ox
; ð36Þ

which achieve 3rd and 4th orders of approximation. Using B-splines with higher support, we can achieve

higher regularity with 4th order (W6), or higher order of approximation (5th for W7 and 6th for W8)
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M 0
6 ¼ 1:5M6 � 0:5x

oM6

ox
; ð37Þ
M 0
7 ¼ 18:75M7 � 11:25x

oM7

ox
þ 2:5x2

o2M7

ox2
; ð38Þ
M 0
8 ¼ 18:75M8 � 11:25x

oM8

ox
þ 2:5x2

o2M8

ox2
: ð39Þ

All the above kernel functions Eqs. (35)–(39) are satisfying the one dimensional property

X
i2Z

Mnðxþ ih; hÞ ¼ 1

h
: ð40Þ

Representative one-sided interpolation functions based on M4 and M5

MS
4 ¼ 1:125M4 � 0:125x

oM4

ox
; ð41Þ
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Fig. 7. Error analysis of differentiation using functions based on M6 and M8 using SVD for non-equidistant samples. (a) L1 error of

3rd order function based on M6 fW0;W1;W2;W3;W4g as function of smoothing length (––) dxav ¼ 0:1, (- - -) dxav ¼ 0:01, (b) L1 error

of 3rd order function based on M8 fW0;W1;W2;W3;W4g as function of smoothing length (––) dxav ¼ 0:1, (- - -) dxav ¼ 0:01, (c) L1 error

of 4th order function based on M8 fW0;W1;W2;W3;W4;W5g as function of smoothing length (––) dxav ¼ 0:1, (- - -) dxav ¼ 0:01, (d) L1
error of 5th order function based on M8 fW0;W1;W2;W3;W4;W5;W6g as function of smoothing length (––) dxav ¼ 0:1, (- - -) dxav ¼ 0:01.
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MS
5 ¼ 1:2M5 � 0:2x

oM5

ox
: ð42Þ

The functions MS
4 and MS

5 achieve 2nd order accuracy.

3.2. Differentiation

As mentioned in Section 2.5, one can use the B-spline derivatives to construct functions that can be used

for differentiation yielding high order of approximation. We will validate this methodology for two
functions ðM6;M8Þ herein, in the interest of brevity. However, the validity of the technique was tested

successfully for a wealth of B-splines. The function to be differentiated is the same as in the case of in-

terpolation (Eq. (32)) from which the exact values of the derivatives were calculated. The error analysis is

performed using similar formulas to Eqs. (33) and (34).

The differentiation function is constructed from the derivatives of the basis functions (Eq. (30)). Fig. 7

shows the differentiation error based on functions constructed from M6 and M8 for non-equidistant sam-

ples. The results indicate that it is possible to construct functions that achieve high-order differentiation

(3rd, 4th and 5th shown in Fig. 7(a)–(d)), if a sufficient number of samples is employed. Note that in order
to have L order of approximation in differentiation, one needs to solve Lþ 1 equations and at least Lþ 1

samples are required.
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Fig. 8. Error analysis of one-sided differentiation using functions based on M6 and M8 using SVD for non-equidistant samples. (a) L1
error of 2nd order function based onM6 fW0;W1;W2g as function of smoothing length (––) dxav ¼ 0:1, (- - -) dxav ¼ 0:01, (b) L1 error of

3rd order function based on M6 fW0;W1;W2;W3g as function of smoothing length (––) dxav ¼ 0:1, (- - -) dxav ¼ 0:01, (c) L1 error of 3rd

order function based on M8 fW0;W1;W2;W3g as function of smoothing length (––) dxav ¼ 0:1, (- - -) dxav ¼ 0:01, (d) L1 error of 4th

order function based on M8 fW0;W1;W2;W3;W4g as function of smoothing length (––) dxav ¼ 0:1, (- - -) dxav ¼ 0:01.
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The same basis functions ðM6;M8Þ were employed for one-sided differentiation. Fig. 8 shows represen-

tatives results for 2nd, 3rd and 4th order for differentiation from non-equidistant samples. It is clear that it

is possible to create functions that realize high order one-sided differentiation. The error is generally
smooth, the system is generally non-singular and has a solution and there is no need for more basis

functions than the equations in the system of Eq. (24).

With these results it is demonstrated that the technique we presented can construct functions that

achieve high-order differentiation. The technique is robust, requiring only a minimum number of samples

that is necessary in order to achieve the desired order of approximation. Similar results were obtained also

when the asymmetrical splines (Eqs. (27) and (31)) were employed in order to construct the differentiation

function (not shown here for brevity).
4. Conclusions

We presented a technique that can construct in a systematic manner interpolation and differentiation

polynomial functions based on the linear combinations of linearly independent functions. The functions are

constructed by matching terms in Taylor series expansions. This is identical to the conservation of high-

order moments, where all the moments are defined as continuous integrals over the normalized coordinate

space. The numerical implementation of these moments involves the approximation of the continuous
integrals. The basis functions are based on the derivatives of spline functions (B-splines herein). For the

solution of the algebraic equation system, a SVD technique was adopted. The constructed algorithm was

tested against interpolation and differentiation for equidistant and non-equidistant samples and detailed

error analysis was presented. Additionally, the technique was applied successfully to one-sided interpola-

tion and differentiation. The additional computational cost of the methodology is considered to be small,

since one solves small algebraic and local systems of size L� L in order to construct the appropriate weights

for L order approximation. The computational cost can be more significant if the method is used for

Lagrangian methods, like SPH, where the topology changes continuously and the constructed functions
must be recomputed.

In the present work we applied the technique only for functions based on B-splines. In general, other

polynomial functions can be used, for example higher order polynomials in order to achieve the highest

possible order of approximation (equal to the support of the kernel) while controlling the regularity of the

final function.

The presented technique can be used to construct functions or weights for high-order interpolation or

differentiation. It can be applied to arbitrary samples without the need of connectivity or grid based in-

formation. The technique presented in this paper does not claim that it can produce unique high order
kernels that are not dependent on the topology, but a robust methodology which can alter the accuracy

according to the number of nodes involved. This is very important from a practical numerical-computational

point of view, as it can couple accuracy and computational cost in an optimized manner. The technique is

appropriate for multidimensional interpolation and differentiation of scattered samples either by con-

structing multidimensional functions, when matching multidimensional Taylor series expansions, or by

constructing orthogonal projections in each dimension by matching one-dimensional Taylor series expan-

sions in each dimension. The resulted functions increase the order of accuracy of already existing meshless

methods like SPH [18]. The present technique is also relevant to grid based methodologies, to construct
weights for stencils that achieve high-order interpolation or differentiation. It can also be employed to in-

crease locally the accuracy of interpolation and differentiation simply by increasing the domain of influence

of the kernel function and matching more terms in the Taylor expansions, as in p-adaptivity [36].

A future improvement of the present methodology could be the implementation of an algorithm that can

automatically choose the maximum possible order of accuracy for a given function, for a random topology.
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An extension to other families of functions presents also the possibility of future work. Our major efforts in

the future will be dedicated to the application of the approach to different areas.
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Appendix A

For completeness we are showing the first eight B-splinesMn (W ¼ Mn) (n ¼ 1:8) which correspond to the

NGP interpolation formula

M1ðx; hÞ ¼ nd
1 06 s < 1

2
; s ¼ jxj

h ;
0 sP 1

2
;

�
ðA:1Þ

linear interpolation formula

M2ðx; hÞ ¼ nd
1� s 06 s < 1; s ¼ jxj

h ;
0 sP 1;

�
ðA:2Þ

quadratic spline

M3ðx; hÞ ¼ nd

3
4
� s2 06 s < 1

2
; s ¼ jxj

h ;
9
8
� 3

2
sþ s2

2
1
2
6 s < 3

2
;

0 sP 3
2
;

8<
: ðA:3Þ

cubic spline

M4ðx; hÞ ¼ nd

2
3
� s2 þ s3

2
06 s < 1; s ¼ jxj

h ;
4
3
� 2sþ s2 � s3

6
16 s < 2;

0 sP 2;

8<
: ðA:4Þ

quartic spline

M5ðx; hÞ ¼ nd

115
192

� 5s2

8
þ s4

4
06 s < 1

2
; s ¼ jxj

h ;
55
96
þ 5s

24
� 5s2

4
þ 5s3

6
� s4

6
1
2
6 s < 3

2
;

625
384

� 125s
48

þ 25s2

16
� 5s3

12
þ s4

24
3
2
6 s < 5

2
;

0 sP 5
2
;

8>>><
>>>:

ðA:5Þ

quintic spline

M6ðx; hÞ ¼ nd

11
20
� s2

2
þ s4

4
� s5

12
06 s < 1; s ¼ jxj

h ;
17
40
þ 5s

8
� 7s2

4
þ 5s3

4
� 3s4

8
þ s5

24
16 s < 2;

243
120

� 81s
24

þ 9s2

4
� 3s3

4
þ s4

8
� s5

120
26 s < 3;

0 sP 3;

8>>><
>>>:

ðA:6Þ
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sextic spline

M7ðx; hÞ ¼ nd

5887
1920

� 77s2

32
þ 7s4

8
� s6

6
06 s < 1

2
; s ¼ jxj

h ;

7861
2560

� 7s
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� 273s2

128
� 35s3

48
þ 63s4

32
� 7s5

8
þ s6

8
1
2
6 s < 3

2
;

1379
1280

þ 1267s
160

� 987s2
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þ 133s3

12
� 63s4
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þ 7s5
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� s6

20
3
2
6 s < 5

2
;

117649
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� 16807s
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þ 2401s2
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� 343s3
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þ 49s4

32
� 7s5

40
þ s6

120
5
2
6 s < 7

2
;

0 sP 7
2
;

8>>>>>>>>><
>>>>>>>>>:

ðA:7Þ
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Fig. 9. The first six B-splines (M1–M6).
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octic spline

M8ðx; hÞ ¼ nd

151
315

� s2

3
þ s4

9
� s6

36
þ s7

144
06 s < 1; s ¼ jxj

h ;
103
210

� 7s
90
� s2

10
� 7s3

18
þ s4

2
� 7s5
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þ s6
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� s7
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16 s < 2;

� 139
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6
þ 49s3
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þ 7s5

30
� s6
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þ s7

20
26 s < 3;
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45

þ 64s2
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� 16s3

9
þ 4s4

9
� s5

15
þ s6

180
� s7

5040
36 s < 4;

0 sP 4;

8>>>>><
>>>>>:

ðA:8Þ

where nd is a normalization constant that depends on the dimensionality of the problem and it is function of

the smoothing length h ðnd / 1
hdÞ, in order for the B-spline to satisfy Eq. (3). The first six B-splines are

shown in Fig. 9.

In general the B-splines can written in symbolic form as

Ml
nðx; hÞ ¼ nd

Xn�1

i¼0

ai;lsi; s ¼ jxj
h
; ðA:9Þ

where the index l represents every segment of the spline.
Appendix B

The solution of the system of Eq. (24) can be singular or near singular. For a square matrix, if all el-
ements of a row or column are zero, or if any row (or column) is equal to another row (or column), or if any

row (or column) is a linear combination of other rows (or columns), then the matrix is singular. This can

happen in the matrix of Eq. (24) and the determinant of a square sub-matrix is zero or close to zero. The

inverse of the sub-matrix can not be calculated, but we must note that the singularity does not mean that

the system has no solution. The existence of solution for such system depends on the right-hand-side matrix

of Eq. (24). For example, for the equation

0 � C0 þ 0 � C1 þ 0 � C2 þ 0 � C3 þ � � � þ 0 � Cn ¼ RHS ðB:1Þ
solution exists only when RHS ¼ 0. This is the case many times for the even lines of the matrix of Eq. (24).

Eq. (B.2) shows the system that needs to be solved to achieve 5th order of approximation.R
D W0 dx

R
D W1 dx

R
D W2 dx

R
D W3 dx

R
D W4 dxR

D xW0 dx ! 0
R
D xW1 dx ! 0

R
D xW2 dx ! 0

R
D xW3 dx ! 0

R
D xW4 dx ! 0R

D x
2W0 dx

R
D x

2W1 dx
R
D x

2W2 dx
R
D x

2W3 dx
R
D x

2W4 dxR
D x

3W0 dx ! 0
R
D x

3W1 dx ! 0
R
D x

3W2 dx ! 0
R
D x

3W3 dx ! 0
R
D x

3W4 dx ! 0R
D x

4W0 dx
R
D x

4W1 dx
R
D x

4W2 dx
R
D x

4W3 dx
R
D x

4W4 dx

2
6666664

3
7777775

C0

C1

C2

C3

C4

2
6666664

3
7777775

¼

1

0

0

0

0

2
6666664

3
7777775
: ðB:2Þ

The even equations are satisfied automatically if the right hand side of the system is zero. For such cases

instead of the system (B.2) a subsystem can be solvedR
D W0 dx

R
D W1 dx

R
D W2 dxR

D x
2W0 dx

R
D x

2W1 dx
R
D x

2W2 dxR
D x

4W0 dx
R
D x

4W1 dx
R
D x

4W2 dx

2
4

3
5 C0

C1

C2

2
4

3
5 ¼

1

0
0

2
4

3
5; ðB:3Þ
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where for C3 ¼ C4 ¼ 0 is one solution of the system (B.2). There are also cases where the system un-

der consideration has no solution. For example this happens when an equation with a zero right hand side can

be written as a linear combination of other equations including the one that has a non-zero right hand side.
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